MLD is rare and progressive if left untreated¹

Early diagnosis is the first line of defense against the impacts of metachromatic leukodystrophy (MLD)^{2,3}

What is MLD?

- Metachromatic leukodystrophy (MLD) is a rare and life-threatening inherited disease of the body's neurometabolic system^{1,4}
- An autosomal recessive disease and a lysosomal storage disorder, MLD is fatal if left untreated^{1,4}

Lysosomal storage disorders come in many forms and cause toxic materials to build up in cells⁵

Caused by a pathogenic variant in the *aryIsulfatase A* (*ARSA*) gene, MLD results in the accumulation of sulfatides in various tissue types^{2,4,6}:

- It is thought that this missing enzyme causes the breakdown of the myelin sheath and damages nerve fibers^{4,7}
- There are nearly 50 lysosomal storage disorders that affect different parts of the body, including the skeleton, brain, skin, heart, and central nervous system⁵
- New lysosomal storage disorders continue to be identified⁵

The role of ARSA enzyme within the body

PHYSIOLOGIC

Sulfatides are a major component of the myelin membrane⁸

The **ARSA enzyme** usually breaks down sulfatides in the lysosome⁷

PATHOLOGIC

Mutations in the **ARSA gene** cause deficiency of the ARSA enzyme reducing sulfatide breakdown^{1,6}

Sulfatide accumulation leads to demyelination and neurodegeneration^{1,6}

MLD mainly affects children and has several subtypes^{2-4,9}

		Early Onset (<7 years)		Late Onset (≥7 years)	
		J at infertile		enile	Adult
			Early juvenile	Late juvenile	
	Distribution	~55%	~15%*	~15%*	~15%
	Age at symptom onset	≤30 months	30 months to <7 years	7 to <17 years	≥17 years
	Median survival probability ⁺	2.7 years	9 years		25 years
	5-year survival probability⁺	25.1%	70.3%		87.1%
	10-year survival probability [†]	0%	44.3%		69.6%
	Mean age at death [†]	4.2 years	17.4 years		43.1 years

*Assuming even distribution between early juvenile and late juvenile.⁹ [†]Based on a systematic literature review of reports from 1921-2006; survival probability as a function of years since onset of symptoms.⁴

How rare is MLD? Who does it affect?

• With improvements in identification technology and awareness, incidence may prove to be higher¹¹

These ethnic populations show significantly higher incidence rates²

- Habbanite Jewish population: **1 in 75**

– Native Alaskans: **1 in 2,500**

Navajo population: **1 in 6,400**

How MLD rapidly progresses, heightening the urgency for early diagnosis^{2,12}

Timeline for the disease course of LI* MLD, the most common form of MLD^{2,4,6,9,12-19}

LI, late infantile.

*Disease timeline is representative and based on median age at event from natural history studies or estimated age from caregiver surveys.

MLD is a genetic disease and newborn screening for MLD is not available in the majority of the US.^{3,20}

Therefore family screening is critical, and siblings of patients with MLD must be tested.³

The life expectancy for those with MLD is tragically short⁴

An estimated

50% of children with LI MLD, the most aggressive form of MLD, die within 5 years of disease onset²²

Autosomal Recessive²¹ Carrier Carrier Father Mother Unaffected Affected Carrier \bigcirc O \cap Unaffected Carrier Affected Son or Daughter Son or Daughter Son or Daughter Ĩ 25% 50% 25% Probability Probability Probability

1 in **100** people are carriers of the ARSA mutation that can cause MLD²³

Over time, the nervous system is damaged and patients with MLD experience neurological symptoms such as: motor problems, behavioral issues, cognitive regression, severe spasticity, and seizures.⁶

- Patients find it increasingly difficult to move, talk, swallow, eat, and see⁶
- Most children with the infantile form die by age 5²²
- In the juvenile form, death occurs 10 to 20 years following onset²

Be on the lookout for symptoms of MLD

Early diagnosis is important, since symptoms can be difficult to identify, and the disease progresses rapidly.^{1-3,6,12}

MLD patients appear healthy at birth, but with rapid progression of the disease early testing and treatment are critical.^{1-3,6,12}

Healthcare professionals must be equipped with the knowledge to identify early signs of MLD to initiate treatment

Early diagnosis and family screening for MLD are crucial³

What are the keys to diagnosing?

✓ Look closely

✓ Act quickly

- Watch for the early behavioral and cognitive signs of early onset MLD⁶
- When a child who once walked now crawls, when a child who once talked now can't, it may be a sign⁴
- With MLD, a missed milestone may be a red flag and a signal to test promptly^{3,12}

Be vigilant for the early signs of MLD

Early Onset (<7 years) ³								
Subtype	Late infantile		Early juvenile					
First signs and symptoms ^{2.69,19,24,25}	 Developmental delay/regression Peripheral neuropathy Muscle weakness 	 Unsteady gait/toe walking/frequent falls Hypotonia/arreflexia Strabismus/ nystagmus 	 Educational and behavioral difficulties Gait disturbance/ falling/poor balance 	 Fine motor/ coordination issues Loss of sphincter control 				
Examples of caregiver language ²⁴	 Delayed/never walked Unsteady/sluggish gait Lose balance, many falls 	 Tremors, shaking Crying, fatigue Sudden squint 	 Loss of balance, unstable walking Hand tremors/arm movement as if after a stroke Difficulty learning, forgetful, lack of concentration 	 Personality changes, impulsive, issues with sleep Peeing pants in school 				

Late Onset (≥7 years) ³								
Subtype	Late juvenile		Adult					
First signs and symptoms ^{6,5,14,19}	 Poor school performance Emotional and behavioral difficulties 	Cognitive and language regressionSocial withdrawal	 Behavioral changes Cognitive difficulties/ disorganized thinking Decline in school/ job performance 	 Psychiatric symptoms, hallucinations Seizures Loss of sphincter control 				
Examples of caregiver language ²⁴	 Loss of balance, unstable walking Hand tremors/arm movement as if after a stroke Difficulty learning, forgetful, lack of concentration 	 Personality changes, impulsive, issues with sleep Peeing pants in school 						

If MLD is suspected, pursue confirmatory laboratory testing immediately

 Urine sulfatide testing and ARSA enzyme activity testing²

- Gene sequencing for *ARSA* gene variant²
- MLD can be detected through an ARSA leukocytes panel²⁶

When MLD is diagnosed there isn't a moment to lose

Refer your patient to a specialized treatment center familiar with the treatment of MLD

For more information on a treatment option, or to help your patients locate a treatment center, use this QR code »

References: 1. Biffi A, Cesani M, Fumagalli F, et al. Metachromatic leukodystrophy-mutation analysis provides further evidence of genotype-phenotype correlation. Clin Genet. 2008:74;349-357. 2. Wang RY, Bodamer OA, Watson MS, et al. Lysosomal storage diseases: diagnostic confirmation and management of presymptomatic individuals. Gen Med. 2011:13;457-484. 3. Fumagalli F, Calbi V, Natali Sora MG, et al. Lentiviral haematopoietic stem-cell gene therapy for early-onset metachromatic leukodystrophy: long-term results from a non-randomised, open-label, phase 1/2 trial and expanded access. Lancet. 2022;399:372-383. 4. Mahmood A, Berry J, Wenger DA, et al. Metachromatic leukodystrophy: a case of triplets with the late infantile variant and a systematic review of the literature. J Child Neurol. 2010;25(5):572-580. 5. Lysosomal storage disorders. National Organization for Rare Disorders. Accessed May 6, 2024. https:// rarediseases.org/rare-diseases/lysosomal-storage-disorders/ 6. Gieselmann V, Krägeloh-Mann I. Metachromatic leukodystrophy - an update. Neuropediatrics. 2010;41:1-6. 7. Metachromatic leukodystrophy. Cleveland Clinic. Accessed May 14, 2024. https://my.clevelandclinic.org/health/diseases/6067-metachromatic-leukodystrophy 8. Jeon SB, Yoon HJ, Park SH, Kim IH, Park EJ. Sulfatide, a major lipid component of myelin sheath, activates inflammatory responses as an endogenous stimulator in brainresident immune cells. J Immunol. 2008;181(11):8077-8087. 9. Gomez-Ospina N. Arylsulfatase A deficiency. In: Adam MP, Feldman J, Mirzaa GM, et al, eds. GeneReviews® [internet]. University of Washington; 1993-2024. Revised April 30, 2020. Accessed March 21, 2024. https://www.ncbi.nlm.nih.gov/books/NBK1130/ 10. Soderholm HE, Chapin AB, Bayrak-Toydemir P, Bonkowsky JL. Elevated leukodystrophy incidence predicted from genomics databases. Pediat Neurol. 2020;111:66-69. 11. Chang SC, Bergamasco A, Bonnin M, et al. A systematic review on the birth prevalence of metachromatic leukodystrophy. Orphanet J Rare Dis. 2024;19:80. 12. Chang SC, Eichinger CS, Field P. The natural history and burden of illness of metachromatic leukodystrophy: a systematic literature review. Eur J Med Res. 2024;29:181. 13. Gajbhiye V, Lamture Y, Uke P. Infantile metachromatic leukodystrophy (MLD): a rare case. Cureus. 2022;14(22):e33155. 14. Harrington M, Whalley D, Twiss J, et al. Insights into the natural history of metachromatic leukodystrophy from interviews with caregivers. Orphanet J Rare Dis. 2019;14:89. 15. Kehrer C, Blumenstock G, Gieselmann V, et al. The natural course of gross motor deterioration in metachromatic leukodystrophy. Dev Med Child Neurol. 2011;53:850-855. 16. Ammann-Schnell L, Groeschel S, Kehrer C, Frolich S, Krageloh-Mann I. The impact of severe rare chronic neurological disease in childhood on the quality of life of families-a study on MLD and PCH2. Orphanet J Rare Dis. 2021;(16):211. 17. Kehrer C, Groeschel S, Kustermann-Kuhn B, et al. Language and cognition in children with metachromatic leukodystrophy: onset and natural course in a nationwide cohort. Orphanet J Rare Dis. 2014;9:18. 18. Kehrer C, Elgun S, Raabe C, et al. Association of age at onset and first symptoms with disease progression in patients with metachromatic leukodystrophy. Neurology. 2021(96):e255-e266. 19. von Figura K, Gieselmann V, Jaeken J. Metachromatic leukodystrophy. In: The Metabolic and Molecular Bases of Inherited Disease, Volume 3. 8th ed. McGraw Hill, 2001: 3695-3724. 20. Newborn screening by state. Leukodystrophy Newborn Screening. Accessed May 14, 2024. https://ldnbs.org/ newborn-screening/ 21. About MLD. MLD Support Association UK. Accessed May 13, 2024. https://www.mldsupportuk.org.uk/ about-mld/ 22. Metachromatic leukodystrophy. National Institute of Neurological Disorders and Stroke. Accessed May 14, 2024. https://www.ninds.nih.gov/health-information/disorders/metachromatic-leukodystrophy?search-term=MLD 23. What is MLD? Cure MLD. Accessed May 13, 2024. https://www.curemld.com/what-is-mld 24. Eichler F, Sevin C, Barth M. Understanding caregiver descriptions of initial signs and symptoms to improve diagnosis of metachromatic leukodystrophy. Orphanet J Rare Dis. 2022;17:370. 25. Fumagalli F, Zambon AA, Rancoita PMV, et al. Metachromatic leukodystrophy: a single-center longitudinal study of 45 patients. J Inherit Metab Dis. 2021;44:1151-1164. 26. Arylsulfatase A, leukocytes. Quest Diagnostics. Accessed May 8, 2024. https://testdirectory. questdiagnostics.com/test/test-detail/5216/arylsulfatase-a-leukocytes?cc=MASTER

Orchard Therapeutics, the Orchard logo, and the Orchard Assist logo are trademarks of the Orchard Therapeutics group. © 2024 Orchard Therapeutics North America. All rights reserved.

